A kernel functionκ(⋅,⋅) is defined on a Reproducing Kernel Hilbert Space (RKHS)H, where it serves as a similarity measure between feature vectorsxi,xj∈X. The kernel satisfies:
κ(xi,xj)=⟨ϕ(xi),ϕ(xj)⟩H=ϕ(xi)⊤ϕ(xj),
whereϕ(⋅):X↦H is an implicit feature mapping that embeds the input feature space into RKHS. This formulation ensures thatκ(⋅,⋅) is symmetric and positive semi-definite, aligning with Mercer’s theorem and enabling kernel methods for spatial analysis.
参考
- https://www.cnblogs.com/luzhanshi/articles/18895084
- https://www.cnblogs.com/massquantity/p/11110397.html
- https://zhuanlan.zhihu.com/p/441182447
- https://zhuanlan.zhihu.com/p/541226732
- https://www.cnblogs.com/zhangcn/p/13289236.html