A kernel functionκ(,)\kappa(\cdot,\cdot) is defined on a Reproducing Kernel Hilbert Space (RKHS)H\mathcal{H}, where it serves as a similarity measure between feature vectorsxi,xjX\mathbf{x}_i, \mathbf{x}_j\in \mathcal{X}. The kernel satisfies:

κ(xi,xj)=ϕ(xi),ϕ(xj)H=ϕ(xi)ϕ(xj),\begin{equation*} \kappa(\mathbf x_i, \mathbf x_j)=\langle\phi(\mathbf x_i), \phi(\mathbf x_j)\rangle_{\mathcal H}=\phi(\mathbf x_i)^\top\phi(\mathbf x_j), \end{equation*}

whereϕ():XH\phi(\cdot):\mathcal{X}\mapsto\mathcal{H} is an implicit feature mapping that embeds the input feature space into RKHS. This formulation ensures thatκ(,)\kappa(\cdot,\cdot) is symmetric and positive semi-definite, aligning with Mercer’s theorem and enabling kernel methods for spatial analysis.

参考

  1. https://www.cnblogs.com/luzhanshi/articles/18895084
  2. https://www.cnblogs.com/massquantity/p/11110397.html
  3. https://zhuanlan.zhihu.com/p/441182447
  4. https://zhuanlan.zhihu.com/p/541226732
  5. https://www.cnblogs.com/zhangcn/p/13289236.html